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Abstract The discovery of frequent musical patterns (motifs) is a relevant problem
in musicology. This paper introduces an unsupervised algorithm to address this
problem in symbolically-represented musical melodies. Our algorithm is able to
identify transposed patterns including exact matchings, i.e., null transpositions. We
have tested our algorithm on a corpus of songs and the results suggest that our
approach is promising, specially when dealing with songs that include non-exact
repetitions.
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1 Introduction

The discovery of frequent musical patterns (motifs) is a relevant problem in musi-
cology. In music, we can find several entities that can be repeated such as notes,
intervals, rhythms, and harmonic progressions. In other words, music can be seen
as a string of musical entities such as notes or chords on which pattern recognition
techniques can be applied.

We can define a music motif as the smallest meaningful melody element. As a rule,
motifs are groups of notes no longer than one measure. In human speech, a motif
is a word. In the same way that sentences consist of words, motifs form musical
phrases. A melody is formed by several main motifs, which are repeated, developed,
and opposed one against another within the melody evolution.
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When analyzing a music work, musicians carry out a deep analysis of the musical
material. This analysis includes motif extraction as a basic task. Musician studies
include contextual information (such as the author, the aim, or the period) but also
morphological data from the music itself. Looking for the motifs that build the whole
work is the first step that a musician takes when faced with a music sheet.

Audio-thumbnailing (i.e., summarizing or abstracting) is another interesting ap-
plication in the musical domain that is related to motif extraction. It provides the
user with a brief excerpt of a song that (ideally) contains the main features of the
work. Before hearing or purchasing a whole song, it would be useful to hear a
representative thumbnail of the whole work. This technique is also important for
indexing large datasets of songs, which can be browsed more quickly and searched
more efficiently if indexed by those small patterns instead of being indexed by the
whole song.

One of the most fundamental ways to classify MIR methods is to divide them
into those that process audio signals using signal processing methods and those
that process symbolic representations. We have decided to work with a symbolic
representation instead of an audio one because it is closer to the original sheet
of music. In other words, the main difficulty with audio representation is that the
transformation from audio signals to symbolic data is far from being accurate. This
fact makes the pattern recognition problem much more difficult and it requires
completely new techniques to deal with signals.

Using the algorithm we present in this paper, we are able to find frequent melodic
and rhythmical patterns in music starting from the MusicXML representation of
the song (www.wikifonia.org). We first transform this symbolic representation into
a sequence of notes. These notes are defined at their lowest level (i.e., pitch and
duration) and in an absolute, not relative, way.

According to the above considerations, we have developed a TreeMiner-based
(Zaki 2005b) algorithm to discover frequent subsequences in music files. Our algo-
rithm is able to identify sequences even when they are transposed. It can be used to
find common motifs in several songs and also find repetitions within a song. In this
paper, we present its application to the discovery of long motifs that are repeated
within a single song. Our hypothesis is that those patterns probably correspond to
the chorus or the more significant part of the song.

Our paper is an extended version of a paper presented at the ISMIS’09 conference
(Berzal et al. 2009) and is organized as follows. In Section 2, we provide some
background on musical data mining and introduce some relevant terms. Section 3
formally defines our sequence pattern mining problem and describes the algorithm
we have devised to solve it. In Section 4, we explain the way our algorithm works by
means of a particular example. Some experimental results are presented in Section 5,
whereas in Section 6 we draw some conclusions.

2 Background

Although it is almost impossible to be exhaustive in analyzing the state of the art
in musical pattern identification, we survey the most relevant works in this field in
Section 2.1. As our approach is based on sequences, we introduce some standard
terms and review some sequence mining algorithms proposed in the literature in
Section 2.2.

www.wikifonia.org
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2.1 Data mining in music

Pattern processing techniques have been applied to musical strings. A complete
overview can be found, for instance, in the paper by Cambouropoulos et al. (2001).
Those algorithms can be divided into those that deal with audio signals (using signal
processing methods) and those that use symbolic representations.

2.1.1 Dealing with audio signals

There are several researchers that have addressed the problem of pattern induction
in an acoustic signal. For instance, Aucouturier and Sandler (2002) proposed an
algorithm to find repeated patterns in an acoustic signal by focusing on timbre;
whereas Chu and Logan (2002) proposed a method to find the most representative
pattern in a song using Mel-spectral features.

Recently, some works have gone further in this direction by trying to identify the
sectional form of a musical piece from an acoustic signal. For example, Paulus and
Klapuri (2009) address this task using a probabilistic fitness measure based on three
acoustic features; whereas Levy and Sandler (2008) use clustering methods to extract
this sectional structure.

Solving the problem of identifying the structure of a musical piece is key for audio-
thumbnailing (i.e., finding a short and representative sample of a song). Zhang and
Samadani (2007) addressed this problem by detecting paragraphs in the song with
repeated melody in a first step and then identifying vocal portions in the song. With
such information, the structure of the song is derived. Another approach, by Bartsch
and Wakefield (2005), developed a chroma-based system that searches for structural
redundancy within a given song with the aim of identifying something like a chorus
or refrain.

2.1.2 Using symbolic representations

There are certain similarities in the use of text and musical data which also allow the
application of text mining methods to process musical data. Both have a hierarchical
structure and the relative order among the elements is of importance. For that
reason, researchers have proposed many different meaningful ways of representing
a piece of music as a string, but all of them use either event strings (where each
symbol represents an event) or interval strings (where each symbol represents the
transformation between events).

Most of the proposed techniques start from a symbolic transcription of music.
For example, Hsu et al. (1998) used a dynamic programming technique to find
repeating factors in strings representing monophonic melodies; whereas Rolland
(1998) recursively computed the distances between large patterns from the distances
between smaller patterns. Meredith et al. (2002) proposed a geometric approach to
repetition discovery in which the music is represented as a multidimensional dataset.
Pienimäki (2002) introduced a text mining based indexing method for symbolic
representation of musical data that extracts maximal frequent phrases from musical
data and sorts them by their length, frequency and personality.

Finally, the paper by Grachten et al. (2004) is of particular relevance because it
represents melodies at a higher level than notes but lower enough to capture the
essence of the melody. This level is the ‘Narmour patterns’ level, based on Narmour’s
I/R model (1992), which is well-known in musicology.
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Our algorithm is also based in a symbolic representation of the song: MusicXML.

2.2 Sequence mining

In our approach for musical motif extraction, we first transform a song into a
sequence of notes. There is a rich variety of sequence types, ranging from simple
sequences of letters to complex sequences of relations.

A sequence over an element type τ is an ordered list S = s1...sm, where:

– each si (which can also be written as S[i]) is a member of τ , and is called an
element of S;

– m is referred to as the length of S and is denoted by |S|;
– each number between 1 and |S| is a position in S.

T = t1....tn is called a subsequence of the sequence S = s1...sm if there exist integers
1 < j1 < j2 < ... < jn < m such that t1 = s j1 , t2 = s j2 , and in general, tn = s jn .

Sequences have been used to solve different problems in the literature (Dong and
Pei 2007; Han and Kamber 2005):

– String matching problems: Several sequence mining techniques have been used,
for instance, in Bioinformatics to find some structures in a DNA sequence
(Böckenhauer and Bongartz 2007):

– Exact string matching: Given two strings, finding the occurrence of one as a
substring of the other one.

– Substring search: Finding all the sequences in a sequence database that
contain a particular string as a subsequence.

– Longest common substring: Finding the substring with maximum length that
is common to all the sequences in a given set.

– String repetition: Finding substrings that appear at least twice in a sequence.

– Periodic pattern discovery: A traditional periodic pattern consists of a tuple of
k components, each of which is either a literal or ‘*’, where k is the period of
the pattern and ‘*’ can be substituted for any literal and is used to enable the
representation of partial periodicity (Wang et al. 2001; Yang et al. 2001).

– Sequence motifs: A motif is essentially a short distinctive sequential pattern
shared by a number of related sequences. There are four main problems in
this area (Dong and Pei 2007): motif representation (i.e., designing the proper
motif representation for the different applications), motif finding (i.e., finding
the motifs shared by several sequences), sequence scoring (i.e., computing the
probability of a sequence to be generated by a motif—using Markov models,
for example), and sequence explanation (i.e., given a sequence and a motif with
hidden states, providing the most likely state path that produced that sequence).

– Sequential pattern mining in transactional databases: Sequential patterns have
been used for predicting the behavior of individual customers. Each customer
is typically modeled by a sequence of transactions containing the set of items he
has bought. Several algorithms address this kind of problems, the most common
being AprioriAll (Agrawal and Srikant 1994), SPADE (Zaki 2001) GSP (Srikant
and Agrawal 1996), and PrefixSpan (Pei et al 2001).
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– Sequential pattern mining in sequence databases: Some algorithms, such as the
one developed by Jiang and Hamilton (2003), look for subsequences that have
a larger frequency (or number of repetitions) than an user-defined threshold,
which is established beforehand. Jiang’s algorithm, for example, uses a tree-
based structure called trie, that preserves the number of times a subsequence is
present in the sequence. Three different versions of his algorithm can be devised:

– A breadth-first search algorithm passes K times through the data sequence,
counting the sequences of size i in its i-th iteration. At the end of each
iteration, infrequent subsequences are pruned.

– A depth-first search algorithm passes just one time through the data using a
window of size K which is moved one position at a time. The sequence in the
window is preserved in the trie structure as well as its prefix. The way this trie
structure is completely built is very memory consuming without pruning.

– A heuristic-first search algorithm is a variation of the depth-first algorithm.
The number of occurrences of the prefixes of a subsequence is compared to
the threshold before inserting the subsequence in the trie. If any prefix of the
subsequence has not yet been shown to be frequent, then occurrences of the
subsequence itself are not counted. This algorithm is more efficient in time
and space but it is not able to find all the frequent subsequences.

Our problem of motif extraction in a piece of music could be seen as a particular
case of the ‘sequential pattern mining in sequence databases’ problem. However,
the algorithms proposed by Jiang et al. have the drawback that they are limited by
the size of the alphabet (i.e., the element type τ according to our notation). This
value can be very high in our particular domain, provided that we take different note
pitches and durations into account.

Furthermore, we consider the presence of similar sequences (transposed motifs in
our problem) that should be counted as if they were exact repetitions. In our case, it
is also interesting to know where these repetitions appear in the sequence, specially
when considering these similar repetitions. This information would not be given by
Jiang’s algorithms, as they only count the number of repetitions.

In the following section, we propose a novel TreeMiner-based algorithm to find
motifs in a sequence in order to solve the problem of motif extraction in a piece
of music. It should be noted, however, that our algorithm can be applied to several
sequences at a time, as well as to different kinds of sequence databases (not just
musical ones).

3 Our sequence pattern mining algorithm

The goal of frequent sequence pattern mining is the discovery of all the frequent
subsequences in a large database of sequences D or in an unique large sequence.

Let δT(S) be the occurrence count of a subsequence S in a sequence T and dT a
variable such that dT(S) = 0 if δT(S) = 0 and dT(S) = 1 if δT(S) > 0. We define the
support of a subsequence as σ(S) = ∑

T∈D dT(S), i.e., the number of sequences in D
that include at least one occurrence of the subsequence S. Analogously, the weighted
support of a subsequence is defined as σw(S) = ∑

T∈D δT(S), i.e., the total number of
occurrences of S within all the sequences in D.
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We also consider the occurrences of a pattern that approximately match (i.e., those
occurrences that are very similar but are not exactly the same). We define the exact
support of a subsequence as the number of occurrences that are exactly equal to the
pattern, whereas the transposed support includes both exact and similar occurrences.

We say that a subsequence S is frequent if its support is greater than or equal to
a predefined minimum support threshold. We define Lk as the set of all frequent
k-subsequences (i.e., subsequences of size k).

3.1 SSMiner

Our algorithm, called SSMiner (Similar Sequence Miner), is based on the POTMiner
(Jimenez et al. 2009) frequent tree pattern mining algorithm, a TreeMiner-like
algorithm for discovering frequent patterns in trees (Zaki 2005b). POTMiner and its
antecessor follow the Apriori (Agrawal and Srikant 1994) iterative pattern mining
strategy, where each iteration is broken up into two distinct phases:

– Candidate Generation: A candidate is a potentially frequent subsequence. In
Apriori-like algorithms, candidates are generated from the frequent patterns
discovered in the previous iteration. Most Apriori-like algorithms, including
ours, generate candidates of size k + 1 by merging two patterns of size k having
k − 1 elements in common.

– Support Counting: Given the set of potentially frequent candidates, this phase
consists of determining their actual support and keeping only those candidates
whose support is above the predefined minimum support threshold (i.e., those
candidates that are actually frequent).

The pseudo-code of our algorithm is shown in Fig. 1 and its implementation details
will be discussed in Sections 3.2 through 3.4.

The sequence of a song is scanned twice by our algorithm, in the process of
obtaining the frequent elements of size 1. The first scan is needed to save the
occurrences of each note and the second one is employed to detect the transposed
occurrences of each note. Then, the infrequent notes are pruned and we are ready
to apply the two phases of the SSMiner algorithm without checking the original
sequence any more.

Fig. 1 SSMiner: our sequence
mining algorithm

algorithm
Obtain frequent elements (frequent patterns of size 1)
Build candidate classes C1 from the frequent elements
for k=2 to MaxSize

for each class P ∈ Ck −1

for each element p ∈ P.
Compute the frequency of p
if p is frequent
then

Create a new class P′ 

′
from p.

Add P to Ck
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3.2 Candidate generation

We use an equivalence class-based extension method to generate candidates (Zaki
2005a). This method generates (k + 1)-subsequence candidates by joining two fre-
quent k-subsequences with k − 1 elements in common.

Two k-subsequences are in the same equivalence class [P] if they share the same
prefix string until their (k − 1)th element. Each element of the class can then be
represented as x, where x is the k-th element label.

Elements in the same equivalence class are joined to generate new candidates.
This join procedure, called extension in the literature, works as follows. Let (x) and
(y) denote two elements in the same class [P], and [Px] be the set of candidate
sequences derived from the sequence that is obtained by adding the element (x) to
P. The join procedure results in attaching the element (y) to the sequence generated
by adding the element (x) to P, i.e, (y) ∈ [Px]. Likewise, (x) ∈ [Py]

3.3 Occurrence lists

Once we have generated the potentially frequent candidates, it is necessary to
determine which ones are actually frequent.

The support counting phase in our algorithm follows the strategy of AprioriTID
(Agrawal and Srikant 1994). Instead of checking the presence of each candidate
in the sequence (which would entail O(|S|) operations), special lists are used to
preserve the occurrences of each pattern in the database, thus facilitating the support
counting phase.

Each occurrence list contains tuples (t, m, p, d, �) where t is the sequence
identifier, m stores the elements of the sequence which match those of the (k − 1)

prefix of the pattern X, p is the position of the last element in the pattern X, d
is a position-based parameter used for guaranteeing that elements in the pattern
are contiguous within the sequence and � indicates the similarity between the
occurrence and the original pattern.

When building the scope lists for patterns of size 1, m is empty and the element
d is initialized with the position of the pattern only element in the original database
sequence. In the first pass through the sequence, exact patterns of size 1 are collected,
being its � parameter initialized as “=”. When similar pattern occurrences are
collected in the second pass through the sequence, the parameter � is initialized
with a value that indicates the similarity between the original pattern and the actual
occurrence.

We obtain the occurrence list for a new candidate of size k by joining the lists
of the two subsequences of size k − 1 that were involved in the generation of the
candidate. Let (tx, mx, px, dx, �x) and (ty, my, py, dy, �y) be two tuples to be joined.
The join operation proceeds as follows:

if

1. tx = ty = t and
2. mx = my = m and
3. dx = 1 (only if k �= 2) and
4. px < py and
5. �x=�y
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then add [t, m
⋃

{px}, py, dy − dx, �y] to the occurrence list of the generated
candidate.

3.4 Support counting

Checking if a pattern is frequent consists of counting the elements in its occurrence
list. The counting procedure is different depending on whether the weighted support
σw is considered or not.

– If we count occurrences using the weighted support, all the tuples in the lists must
be taken into account.

– If we are not using the weighted support, the support of a pattern is the number
of different sequence identifiers within the tuples in the occurrence list of the
pattern.

It should be noted that d represents the distance between the last node in the
pattern and its prefix m. Therefore, we only have to consider the elements in the
scope lists whose d parameter equals 1 for guaranteeing that elements in the pattern
are contiguous within the sequence. It is important to remark that the remaining
elements in the lists cannot be eliminated because they are needed to build the
occurrence lists of larger patterns.

3.5 Representative patterns

Our algorithm returns all the frequent patterns of the maximum size indicated by
the user (or smaller ones if there are no patterns of such size). As musical motifs
are generally no longer than a measure, a value of ten is typically used by default.
Nevertheless, this limit can be easily modified since our algorithm can return all the
frequent patterns that exist in the song regardless of their size. The resulting output
will be the set of frequent patterns that represent the song. The algorithm also returns
the positions of the different occurrences of the patterns within the song (including
transposed occurrences if needed).

3.6 SSMiner complexity

SSMiner starts by computing the frequent patterns of size 1. This step is performed
by obtaining the vertical representation of the sequence database, i.e., the individual
notes that appear in the sequences with their occurrences represented as scope
lists. This representation is obtained in linear time with respect to the number of
sequences in the database just by scanning it and building the scope lists for patterns
of size 1. We then discard the patterns of size 1 that are not frequent. This results
in L scope lists corresponding to the L frequent notes in the sequence database and
each frequent label leads to a candidate class of size 1.

Let c(k) be the number of classes of size k, which equals the number of frequent
patterns of size k, and e(k) the number of elements that might belong to a particular
class of size k (i.e., the number of patterns of size k + 1 that might be included in the
class corresponding to a given pattern of size k).
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In SSMiner, each sequence pattern grows only by adding an element at the end
of the sequence pattern. The number of different sequences of size k + 1 that can
be obtained by the extension of a sequence of size k is L · k. Hence, the number of
elements in a particular class, e(k), is O(L).

The number of classes of size 1 equals L, the number of frequent labels, so that
c(1) = L. The classes of size k + 1 are derived from the frequent elements in classes
of size k. In the worst case, when all the e(k) elements are frequent, c(k + 1) = c(k) · e(k).
Solving the recurrence, we obtain c(k + 1) = c(k) · L = O(Lk).

For each considered pattern of size k + 1, SSMiner must perform a join operation
to obtain its scope list from the scope lists of the two patterns of size k that led to it.

The size of the scope list for a pattern of size k is O(t · e) while the computational
cost of a scope-list join operation is O(t · e2), where t is the number of sequences
in the database and e is the average number of embeddings of the pattern in each
sequence (Zaki 2005a).

In the worst case, the number of embeddings s(k − 1) of a pattern of size k − 1
in a sequence of size S equals the number of subsequences of size k − 1 within the
sequence of size S. This number is bounded by S − k + 1.

Hence, the cost of the join operation needed for obtaining the scope list of a
pattern of size k, is j(k) = O(t · s(k − 1)2) = O(t · (S − k + 1)2).

The cost of obtaining all the frequent patterns of size k will be, therefore,
O(c(k) · j(k)) = O(Lk · t · (S − k + 1)2)

The total cost of executing the SSMiner algorithm to obtain all the frequent
patterns up to k = MaxSize is

∑
k=1...MaxSize(Lk · t · (S − k + 1)2). Since the running

time of our algorithm is dominated by the time needed to discover the largest
patterns (i.e., k = MaxSize), SSMiner is O(LMaxSize · t · (S − MaxSize + 1)2).

Therefore, our algorithm execution time is proportional to the number of se-
quences in the sequence database (t = 1 in our motifs identification problem), and
to the number of patterns than can be identified (Lk). Finally, its execution time is
quadratic with respect to the size of the sequences (S).

4 An example

In this section, we present an example to help the reader understand the way our
algorithm identifies frequent subsequences in a sequence. In order to facilitate
the understanding of the procedure, we are not considering the duration of notes.
Furthermore, we only take into account those transpositions of fifth.

We will use in this paper the scientific pitch notation which combines a letter-
name, accidentals (if any) and a number identifying the pitch’s octave. This notation
is the most common in English written texts.

Let’s suppose we have the following piece of a song: G4 A4 G4 E4 D5 E5 D5 B4
G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4 (see Fig. 2), and we want to extract those
subsequences that appear at least four times in it.

The first step of our algorithm is scanning the sequence to obtain all the occur-
rences of each note. Then, the occurrence lists of each note are built as indicated in
Section 3.3. Results are shown in Fig. 3.
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Fig. 2 Sample piece: G4 A4 G4 E4 D5 E5 D5 B4 G4 A4 G4 E4 A4 G4 B4 G4 A4 G4 E4

The first element is 1 in all the tuples because we only have one sequence (i.e.,
only one song) in our example. The second one is the prefix of the substring (empty
in patterns of size 1). The third element indicates the position of the last element
of the pattern in the sequence. The fourth element is the distance between the last
element of the pattern and its prefix (or the position of the element when there is
no prefix, as this is the case). Finally, the last element indicates if the occurrence is
exactly equal to the pattern (‘=’) or if it is transposed.

In this example, only those transpositions of up one fifth are being taken into
account, so that ‘+5’ is the only alternative for this element in our example. It should
be noted, however, that all possible transpositions—distances between two notes—
could be taken into account. In any case, we need only to compare notes in one
direction, as we will always find at least a version of the pattern that summarizes all
its transpositions.

Going back to our example, the note G4 is transposed up one fifth as D5.
Therefore, there are 9 tuples in the occurrence list of G4: 7 as itself, 2 as D5.

The next step is checking if all the notes are frequent. In this case, only G4, A4,
and E4 have at least four occurrences. Therefore, only these patterns will be kept.

Figure 4 shows the extension of the element G4. This element is extended with
all the frequent patterns of size 1 including itself, and the occurrence lists of each
candidate pattern of size 2 are obtained by joining the lists of the elements that
generated it, as explained in Section 3.3.

Figure 4 shows, with bold letters, the tuples where d = 1. That means that these
are contiguous occurrences of the pattern. In our example, only the patterns G4
A4 and G4 E4 appear as contiguous subsequences in our song. Furthermore, they
have at least four occurrences—our minimum support threshold—and they will be
extended to generate candidates of size 3. It should be noted that the pattern G4 G4

G4

{1,_,1,1,=}
{1,_,3,3,=}
{1,_,9,9,=}
{1,_,11,11,=}
{1,_,14,14,=}
{1,_,16,16,=}
{1,_,18,18,=}
{1,_,5,5,+5}
{1,_,7,7,+5}

A4

{1,_,2,2,=}
{1,_,10,10,=}
{1,_,13,13,=}
{1,_,17,17,=}
{1,_,6,6,+5}

E4

{1,_,4,4,=}
{1,_,12,12,=}
{1,_,19,19,=}
{1,_,8,8,+5}
{1,_,15,15,+5}

D5

{1,_,5,5,=}
{1,_,7,7,=}

E5

{1,_,6,6,=}

B4

{1,_,8,8,=}
{1,_,15,15,=}

Fig. 3 Occurrence lists of the elements of the following sequence: G4 A4 G4 E4 D5 E5 D5 B4 G4
A4 G4 E4 A4 G4 B4 G4 A4 G4 E4
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G4 G4 G4 A4

{1,1,2,1,=} {1,1,10,9,=}
{1,1,13,12,=}  {1,1,17,16,=}
{1,3,10,7,=}    {1,3,13,10,=}
{1,3,17,14,=} {1,9,10,1,=}
{1,9,13,4,=}   {1,9,17,8,=}
{1,11,13,2,=}  {1,11,17,6,=}
{1,14,17,3,=} {1,16,17,1,=}
{1,5,6,1,+5}

G4 E4

{1,1,4,3,=}      {1,1,12,11,=}
{1,1,19,18,=} {1,3,4,1,=}
{1,3,12,9,=}    {1,3,19,16,=}
{1,9,12,3,=}    {1,9,19,10,=}
{1,11,12,1,=} {1,11,19,8,=}
{1,14,19,5,=}  {1,16,19,3,=}
{1,18,19,1,=} {1,5,8,3,+5}
{1,5,15,10,+5} {1,7,8,1,+5}
{1,7,15,8,+5}

{1,1,3,2,=}          {1,1,9,8,=}
{1,1,11,10,=}      {1,1,14,13,=}
{1,1,16,15,=}      {1,1,18,17,=}
{1,3,9,6,=}          {1,3,11,8,=}
{1,3,14,11,=}      {1,3,16,13,=}
{1,3,18,15,=}      {1,9,11,2,=}
{1,9,14,5,=}    {1,9,16,7,=}
{1,9,18,9,=}    {1,11,14,3,=}
{1,11,16,5,=}    {1,11,18,7=}
{1,14,16,2,=}   {1,14,18,4,=}
{1,16,18,2,=}    {1,5,7,2,+5}

Prefix: G4

Fig. 4 Extension of the element G4 in Fig. 3

is not contiguous and will not be extended. However, it is preserved to perform the
extension of G4 A4 with G4 E4.

After two more extensions, which are done in the same way, we obtain the pattern
G4 A4 G4 E4 with a support of 4 and an exact support of 3. This is be the pattern we
would use to characterize our example song.

5 Experiments

We have tested our algorithm using a corpus of 44 songs. This set includes songs from
a wide variety of authors. The first column in Table 1 shows the songs used in our
experiments.

We have performed 4 experiments with different constraints:

– Exact pitch and duration (pitch-duration)
– Exact pitch and any rhythm (pitch)
– Transpositions but exact duration (transposition-duration)
– Transpositions and any duration (transposition)

Pitch-duration is the most restrictive one, whereas transposition is the experiment
with a lower number of constraints. All these configurations are representative when
looking for musical motifs, as they can be modified in tempo or in pitch. Unlike the
example in the former section, all the possible transpositions are taken into account
in these experiments.

Table 1 summarizes the results of our experiments. Each row corresponds to one
of the songs in the corpus. The second column (‘notes’) indicates the number of notes
in each song.

The ‘Max Size’ column indicates the size of the longest pattern(s) found in each
song. Patterns of this size are the only ones that are finally returned to the user.
As our aim in this paper is searching for repeating motifs, and not whole repeating
sections, we have to introduce an upper limit to the size of the patterns. Preliminary
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tests with our song corpus have shown that a value of ten is adequate for this
parameter providing that musical motifs are generally no longer than a measure.

The ‘Patterns’ column indicates the number of patterns our algorithm finds. The
first number is the amount of patterns of maximum size (i.e. the size indicated on
the previous column); whereas the second number is the total amount of patterns,
regardless of their size. As the reader can see, the total amount of patterns is pretty
high. However, many of these patterns are not musically relevant since they are part
of bigger ones. Even more, patterns of size 1 and 2, which can hardly be considered
as motifs, are also included in this set.

The ‘exact support’ column is the exact support of the returned patterns. Intervals
appear in some cases due to the fact that not all the returned patterns necessarily
appear the same number of times.

Finally, ‘transposed support’ indicates the support of patterns including transpo-
sitions. This column is only relevant for the experiments transposition-duration and
transposition, when transpositions are taken into account. As expected, values in this
column are always equal or greater than those in the corresponding ‘exact support’
column.

For us, the minimum support required for a pattern to be considered frequent is
four. Any pattern with a lower number of repetitions will be deleted. This value has
been manually set regarding the size of the evaluating songs and some preliminary
tests. However, it can be easily adjusted when new datasets require it.

The reader can also notice that, in some cases (namely, when transpositions are
taken into account), patterns with exact support lower than four can be found. Those
patterns do not have enough exact repetitions as themselves, but they are frequent
when transpositions are taken into account. Hence, transpositions are important
because, without considering them, some patterns would have not been discovered,
as they do not reach the minimum support threshold just by exact repetitions. That
happens, for instance, with the ‘Crazy’ and ‘Hero’ songs.

Regarding the length of the excerpts that have been tested, three notes can hardly
represent any meaningful motif. However, almost anyone could identify Beethoven’s
Fifth Symphony by just four notes. Hence, a minimum length of four seems adequate.

It should be noted that, in some situations, there is another transposition of the
pattern that has greater exact support than the one returned by our algorithm as
described in Section 3. As we mentioned earlier, our algorithm looks for transposed
motives only in one direction and this suffices to guarantee that it will find all the
relevant occurrences; however, the returned patterns are not necessarily the most
frequent exact ones. Given that our algorithm keeps track of the occurrences of a
given pattern and all of its transpositions, it is trivial to obtain the most frequent exact
pattern just by looking at the corresponding scope list. This pattern will correspond
to the most common � in the scope list.

Table 2 Percentage of songs that include at least one identified pattern within their chorus

Pitch-duration Pitch Transposition-duration Transposition

%Yes 63.64 68.18 63.64 72.73
%No 29.55 25.00 29.55 20.45
%Without chorus 6.82 6.82 6.82 6.82
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Fig. 5 SSMiner execution time
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It should also be observed that, in some songs, the number of patterns of MaxSize
elements is pretty high (e.g. ‘Ballade pour Adeline’ or Beethoven’s ‘Für Elise’). This
is due to the fact that many of those are still subpatterns of bigger ones. For instance,
a pattern of size 15 includes six sequential subpatterns of size 10 (starting from the
1st, 2nd, 3rd, 4th, 5th and 6th note, respectively).

In order to evaluate the goodness of our method, we have checked whether
or not the discovered frequent patterns belong to the chorus of the song—in our
experiments, 6.82% of the songs do not have a clear chorus. Table 2 shows the
percentage of songs which have at least one identified pattern within their chorus. As
can be seen, above 60% of the songs fulfill this requirement. Also, it is remarkable
that not considering the rhythm results in more patterns belonging to the chorus
of the songs. This fact indicates that patterns are not always exactly repeated as
themselves, but slightly modified. Although the chorus-belonging criterion appears
to be a valid and obvious one, it should be noted that some songs are better identified
by patterns which do not belong to the chorus.

Regarding SSMiner computation time, Fig. 5 shows the time consumed in each
experiment with respect to the number of notes in the melody. The chart groups the
songs into five groups according to their lengths and displays the average execution
time for each subset of melodies. These execution times are quadratic with respect
to the number of notes in the melodies, as explained in Section 3.6.

6 Conclusions

We have presented the application of frequent pattern mining to the discovery of
musical motifs in a piece of music. MusicXML files, which can be easily collected,
are transformed into sequences of notes, defined at their lower level. Our algorithm,
SSMiner, is able to efficiently identify frequent subsequences in a sequence.

The matching between the patterns does not need to be exact. Our algorithm is
able to identify transposed patterns including exact matchings, i.e., null transposi-
tions. Our experiments suggest that our approach performs well in a set of randomly-
selected songs.
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In the future, we intend to employ interval strings to represent notes rather than
the absolute pitches we have used in the experiments reported in this paper. We will
also consider more abstract representations of melodies, such as the one proposed by
Narmour. Finally, we plan to study the parallelization of our algorithm implementa-
tion in order to improve its execution time, which is already asymptotically optimal.
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