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Abstract

Decision trees are probably the most popular and commonly used classification

model. They are recursively built following a top-down approach (from general con-

cepts to particular examples) by repeated splits of the training dataset. When this

dataset contains numerical attributes, binary splits are usually performed by choosing

the threshold value which minimizes the impurity measure used as splitting criterion

(e.g. C4.5 gain ratio criterion or CART Gini’s index). In this paper we propose the use

of multi-way splits for continuous attributes in order to reduce the tree complexity

without decreasing classification accuracy. This can be done by intertwining a hierar-

chical clustering algorithm with the usual greedy decision tree learning.
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1. Introduction

It is well-known [11,24] that decision trees are probably the most popular

classification model. Commonly used decision trees are usually built following
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a top-down approach, from general concepts to particular examples. That is

the reason why the acronym TDIDT, which stands for Top-Down Induction of

Decision Trees, is used to refer to this kind of algorithms.

The final aim of the decision tree learning process is to build a decision tree
which conveys interesting information in order to make predictions and clas-

sify previously unseen data.

TDIDT algorithms usually assume the absence of noise in input data and

they try to obtain a perfect description of data. This is usually counterpro-

ductive in real problems, where management of noisy data and uncertainty is

required. Pruning techniques (such as those used in ASSISTANT and C4.5)

have proved to be really useful in order to avoid overfitting. Those branches

with lower predictive power are usually pruned once the whole decision tree
has been built.

The TDIDT algorithm family includes classical algorithms, such as CLS

(Concept Learning System), ID3 [23], C4.5 [25] and CART (Classification And

Regression Trees) [5], as well as more recent ones, such as SLIQ [22], SPRINT

[29], QUEST [19], PUBLIC [28], RainForest [12], BOAT [10], and ART [3].

Some of the above algorithms build binary trees, while others induce multi-

way decision trees. However, when working with numerical attributes, most

TDIDT algorithms choose a threshold value in order to perform binary tests.
The particular tests which are used to branch the tree depend on the heuristics

used to decide which ones will potentially yield better results.

The rest of our paper is organized as follows. Section 2 discusses the heu-

ristics mentioned in the previous paragraph. Section 3 introduces the binary

splits which are usually employed to branch decision trees when continuous

attributes are present. Section 4 describes how to build multi-way decision trees

using a hierarchical clustering algorithm. In Section 5, we present some

empirical results we have obtained by applying our alternative approach to
build decision trees. Finally, some conclusions and pointers to future work are

given in Section 6. In [2] we describe alternative similarity measures which can

be used in our hierarchical clustering algorithm.
2. Splitting criteria

Every possible test which splits the training dataset into several subsets will

eventually lead to the construction of a complete decision tree, provided that at

least two of the generated subsets are not empty.

Each possible test must be evaluated using heuristics and, as most TDIDT

algorithms perform a one-ply lookahead heuristic search without backtracking

(i.e. they are greedy), the selected heuristics plays an essential role during the

learning process. For instance, most TDIDT algorithms decide how to branch
the tree using some measure of node impurity. Such heuristics, splitting rules
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henceforth, are devised to try to obtain the ‘‘best’’ decision tree according to

some criterion. The objective is usually to minimize the classification error, as

well as the resulting tree complexity (following Occam’s Economy Principle).

Several splitting rules have been proposed in the literature. CART [5] uses
Gini index to measure the class diversity in the nodes of a decision tree. ID3

[23] attempts to maximize the information gain achieved through the use of a

given attribute to branch the tree. C4.5 [25] normalizes this information gain

criterion in order to reduce the tree branching factor and [26] adjusts C4.5

criterion to improve its performance with continuous attributes. Lopez de

Mantaras [20] proposed an alternative normalization based on a distance

metrics. Taylor and Silverman [31] proposed the mean posterior improvement

criterion as an alternative to the Gini rule for binary trees. Berzal et al. [1]
introduce two alternative splitting criteria which are dependent only on the

most common class in each node and, although simpler to formulate, are as

powerful as previous proposals.

All the above-mentioned criteria are impurity-based functions, although

there are measures which fall into other categories: some of them measure the

difference among the split subsets using distances or angles, emphasizing the

disparity of the subsets (on binary trees, typically), while others are statistical

measures of independence (a v2 test, for example) between the class propor-
tions and the split subsets, emphasizing the reliability of class predictions.

Further information about splitting criteria can be found in the references,

such as Martin’s extensive survey [21] and Shih’s study focused on binary

decision trees [30].
3. Binary splits for numerical attributes

The splitting criteria reviewed in the previous section provide a mechanism

for ranking alternative divisions of the training set when building decision

trees. Obviously, there must be some way of generating possible divisions of the

training set. In other words, the alternative tests which lead to different decision

trees must be enumerated in order to be ranked.

Most TDIDT algorithms define a template of possible tests so that it is
possible to examine all the tests which match with the template. Those tests

usually involve a single attribute because it makes the trees easier to understand

and sidesteps the combinatorial explosion that results if multiple attributes can

appear in a single test [25].

C4.5-like algorithms, which build multi-way decision trees for discrete

attributes, check the value of such categorical attributes and build a branch for

each value of the selected attribute. More complex tests are also allowed, by

grouping values of the attribute in order to reduce the tree branching factor. In
the extreme case, all attribute values are clustered into two groups in order to
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build binary trees (as in CART). However, we feel that this strategy makes the

trees more complex to understand for human experts.

When an attribute A is continuous, i.e. it has numerical values, a binary test

is usually performed. This test compares the value of A against a threshold t:
A6 t.

In spite of their apparent complexity, those tests are easy to formulate since

you can sort the training cases on the values of A in order to obtain a finite set

of values fv1; v2; . . . ; vng. Any threshold between vi and viþ1 will have the same

effect when dividing the training set, so that you just have to check n� 1

possible thresholds for each numerical attribute A. It might seem computa-

tionally expensive to examine so many thresholds, although, when the cases

have been sorted, this can be performed in one sequential scan of the training
set.

It should be noted that TDIDT performance can also be improved by AVC-

sets [12] or any other scalability-oriented implementation technique, such as

the middleware described in [6].

Once you can determine that the best possible threshold is between vi and
viþ1, you must choose an accurate value for the threshold to be used in the

decision tree. Most algorithms choose the midpoint of the interval ½vi; viþ1� as
the actual threshold, that is
ti ¼
vi þ viþ1

2

C4.5, for instance, chooses the largest value of A in the entire training set

that does not exceed the above interval midpoint:
ti ¼ max vjv
n

6
vi þ viþ1

2

o

This approach ensures that any threshold value used in the decision tree

actually appears in the data, although it could be misleading if the value sample

in the training dataset is not representative.

Here we propose a slightly different approach which consists of choosing a

threshold between vi and viþ1 depending on the number of training instances

below and above the threshold. If there are L instances with v6 vi, and R
examples vP viþ1, then the threshold ti is
ti ¼
R� vi þ L� viþ1

Lþ R
Let us emphasize that the number of instances whose value of A is greater

than the threshold (R) multiplies to the threshold lower bound vi while the upper
bound viþ1 is multiplied by the number of examples below the threshold (L).

This way, the threshold will be nearer to vi than to viþ1 if there are less

training instances falling in the left branch of the tree, which is the branch
corresponding to the examples with v6 vi. Similarly, the threshold will be
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nearer to viþ1 if the majority of the training examples have values of A below or

equal to vi.
Although this slight modification to the usual algorithm will usually not

yield any classifier accuracy improvement, we find that the decision trees it
produces are more appealing, specially when the resulting trees are quite

unbalanced (which, on the other hand, is a common situation when continuous

attributes are present).
4. Multi-way splits for numerical attributes

If we had only categorical attributes, we could use any C4.5-like algorithm

in order to obtain a multi-way decision tree, although we would usually obtain

a binary tree if our dataset included continuous attributes.

Using binary splits on numerical attributes implies that the attributes in-

volved should be able to appear several times in the paths from the root of the

tree to its leaves. Although these repetitions can be simplified when converting

the decision tree into a set of rules, they make the constructed tree more leafy,
unnecessarily deeper, and harder to understand for human experts. As stated in

[26], ‘‘non-binary splits on continuous attributes make the trees easier to

understand and also seem to lead to more accurate trees in some domains’’.

On the other hand, if we use multi-way splits and we are confident enough

that the selected split properly discriminates among the problem classes, then

we can leave the attribute out once it has been used and the resulting tree will

be smaller, easier to understand, and faster to build, while its accuracy will not

be significantly hurt.
We could sidestep this problem if we group all numeric attribute values

before building the decision tree (a.k.a. global discretization). Those attributes

could then be treated as if they were categorical. However, it would be desir-

able to find some way to cluster the numeric values of continuous attributes

depending on the particular situation (i.e. local discretization), since the

resulting intervals could widely vary among the different steps in the decision

tree induction process.

Our aim here is to propose an alternative method for handling numeric
attributes when building decision trees which generates suitable intervals for

those attributes depending on the context. As we will see, using multi-way splits

will decrease the average tree depth and, therefore, it will lead to trees which

are easier to interpret by humans.
4.1. Classical value clustering

Once our objectives are clear, we face the problem of how to group values in
a meaningful way. This well-known problem, the clustering of patterns
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according to a similarity metric, is also known as unsupervised learning, in

contrast to the supervised learning that TDIDT algorithms perform.

Given a set of points in a high-dimensional space, clustering algorithms try

to group those points into a small number of clusters, each cluster containing
similar points in some sense. In other words, clustering is the non-supervised

classification of patterns: the process of generating classes without any a priori

knowledge. Good introductions to this topic can be found in [13,33].

As TDIDT algorithms, most clustering methods are heuristic, in the sense

that local decisions are made which may or may not lead to optimal solutions

(i.e. good solutions are usually achieved although no optimum is guaranteed).

In their quest for better results, researchers have proposed increasingly com-

plex algorithms such as ISODATA [32], which stands for Iterative Self-Orga-
nizing Data Analysis Techniques, with the final A added to make the name

pronounceable. However, the results obtained by most iterative algorithms,

such as the k-Means algorithm and all its variants, depend on the order in

which patterns are presented to the algorithm. Modern search strategies, such

as GRASP (Greedy Randomized Adaptive Search Procedure), which can be

used in conjunction with the classical k-Means algorithm, and also graph-based

methods have been used to solve this problem. While the latter are impractical

in real-world problems, the former techniques can yield excellent results when
combined with classical methods.

A great number of clustering algorithms have been proposed in the litera-

ture, most of them from the Pattern Recognition research field. In general, we

can classify clustering algorithms into centroid-based methods and hierarchical

algorithms.

• Centroid-based clustering algorithms characterize clusters by central points

(a.k.a. centroids) and assign patterns to the cluster of their nearest centroid.
The k-Means algorithm is the most popular algorithm of this class, and also

one of the simplest.

• Hierarchical clustering methods are incremental. Agglomerative (a.k.a.

merging or bottom-up) hierarchical clustering methods begin with a cluster

for each pattern and merge nearby clusters until some stopping criterion is

met. Alternatively, divisive (a.k.a splitting or top-down) hierarchical cluster-

ing methods begin with a unique cluster which is split until the stopping cri-

terion is met. In this paper we propose a hierarchical algorithm in order to
build multi-way decision trees using numeric attributes, although we use a

novel approach to decide how to cluster data.

4.2. Discretization techniques

Splitting a continuous attribute into a set of adjacent intervals, also known
as discretization, is a well-known enabling technique to process numerical
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attributes in Machine Learning algorithms [18]. It not only provides more

compact and simpler models which are easier to understand, compare, use, and

explain; but also makes learning more accurate and faster [7]. In other words,

discretization extends the borders of many learning algorithms [18].
Discretization methods used as an aid to solve classification tasks are usually

univariate (for the sake of efficiency) and can be categorized according to

several dimensions:

• Supervised vs. unsupervised (depending on their use of class information to

cluster data). Supervised methods employ the class information to evaluate

and choose the cut-points, while unsupervised methods do not.

• Dynamic (local) vs. static (global). In a global method, discretization is per-
formed beforehand. Local methods discretize continuous attributes in a

localized region of the instance space (as in C4.5) and their discretization

of a given attribute may not be unique for the entire instance space.

The simplest discretization methods create a specified number of bins (e.g.

equiwidth and equidepth). Supervised variants of those algorithms include

Holte’s One Rule Discretizer [16].

Information Theory also provides some methods to discretize data (as the
entropy and gain ration splitting criteria used in decision trees). Fayyad and

Irani’s multi-interval discretization based on Rissanen’s Minimum Description

Length Principle (MDLP) is a prominent example [9]. Mantaras Distance can

be used as a variation of the original Fayyad and Irani’s proposal [20] and Van

de Merckt’s contrast measure provides another alternative [34].

Other approaches include Zeta [15], which employs a measure of strength of

association between nominal values: the maximum achievable accuracy when

each value of a feature predicts a different class value. The v2 statistics has also
been used in discretization algorithms such as ChiMerge, Chi2, and ConMerge.

A survey of such methods an a taxonomy proposed to categorize them can be

found in [18]. Dougherty et al.’s paper [7] can also be a good starting point for

the interested reader.

4.3. An alternative approach: taking context into account

Once we have described how classical clustering algorithms work and some

previous work on discretization algorithms, we will present a different view-

point in order to formulate a clustering algorithm which will help us to group

numeric values into intervals. Those intervals will then be used to build multi-

way decision trees in classification tasks.

The naive approach to build multi-way decision trees using numerical

attributes consists of using any well-known classical clustering algorithm with
the set of one-dimensional patterns which correspond to the values of the
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continuous attribute we evaluate. For example, we could use a graph-based

theoretical algorithm which finds a minimum spanning tree for the training set

and removes its longest edges, as described in [4]. Although it is easy to

implement in the one-dimensional case and optimal from a theoretical point of
view (that is, it maximizes inter-cluster distance), this approach is useless for

our purposes, since it does not take into account whether the generated split

leads to a better decision tree or to a worse one. In other words, it does not

consider our classification problem context.

The actual value distribution of a continuous attribute we would use in a

traditional unsupervised clustering algorithm is completely meaningless for

clustering individual values into intervals given our classification purposes.

Supervised discretization techniques (see Section 4.2) do take class infor-
mation into account, although they usually focus on some kind of purity

measure associated to each interval resulting from the discretization process.

Here we prefer to measure the similarity between adjacent intervals in order to

choose the appropriate cut-points which delimit. Henceforth, we will consider

the class distribution for each value in order to group adjacent values and build

the intervals that lead to the discretization of a continuous attribute.

In order to make our multi-way TDIDT algorithm context-sensitive, we

redefine the notion of pattern used by our clustering algorithms, which will be a
standard hierarchical clustering algorithm.

Clustering algorithms usually compute the distance between patterns using

their feature space. Here we prefer to use the distance between class distribu-

tions corresponding to adjacent values because adjacency relationships are

established beforehand by the attribute values. In fact, any distance metrics

could be used between attribute values in order to determine adjacency rela-

tionships. Since adjacent values in the training dataset will always be the

nearest ones in the traditional sense, it is unnecessary to compute these actual
distances. Obviously, such implicit distance measurements are not enough to

solve our problem. We need to introduce a criterion to decide which pair of

adjacent values or intervals to combine (if we follow a bottom-up approach) or

where to split a given interval (if we decide to employ a top-down algorithm).

The differences between class distributions for attribute values in the training

set will help us decide how to merge adjacent values or where to split a given

interval. That is, intervals will be merged/split using a classical hierarchical

clustering algorithm.
It should be noted that this technique can be applied to any of the existing

TDIDT algorithms, from C4.5 to RainForest. Our method actually constitutes

a general-purpose supervised discretization technique by itself.

Given a set of adjacent intervals I1; I2; . . . ; In for attribute A, we will char-

acterize each one of them with the class distribution of the training examples it

covers. If there are J different problem classes, each interval I will have an

associated characteristic vector VI ¼ ðp1; p2; . . . ; pJ Þ, where pj is the probability
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of the jth class in the training examples which have their A value included in the

interval I .
4.3.1. An example

Let us consider a three-class classification problem. Let a be a continuous

attribute with four observed attribute values (namely v1, v2, v3, and v4). In this

case, every value vi of the continuous attribute a is characterized by a 3-
dimensional vector Vi which contains the relative frequency for each class in the

instances belonging to the training dataset whose attribute a takes the value v.
Let us suppose that our characteristic vectors are V1 ¼ ð0:3; 0:4; 0:3Þ,

V2 ¼ ð0:2; 0:6; 0:2Þ, V3 ¼ ð0:8; 0:1; 0:1Þ, and V4 ¼ ð0:6; 0:4; 0:0Þ. We evaluate the

construction of a 4-way decision tree using the subsets corresponding to each

attribute value and, after that, we merge the most similar pair of adjacent value

distributions. If we use the squared Euclidean distance d2
2 ðVi ; VjÞ to measure

vector dissimilarity, we obtain d2
2 ðV1; V2Þ ¼ 0:06, d2

2 ðV2; V3Þ ¼ 0:62, and
d2
2 ðV3; V4Þ ¼ 0:14. Since ðV1; V2Þ is the most similar pair of adjacent vectors, we

merge them and obtain V12 ¼ ð0:25; 0:5; 0:25Þ if both v1 and v2 represent the

same number of training instances. We then evaluate the 3-way decision tree

which would result from using fv1; v2g, fv3g, and fv4g. Again, we compute the

distance between adjacent vectors in order to obtain d2
2 ðV12; V3Þ ¼ 0:3475 and

d2
2 ðV3; V4Þ ¼ 0:14, so we decide to merge v3 and v4. Our current clusters are,

therefore, fv1; v2g and fv3; v4g. We evaluate the corresponding binary decision

tree and terminate the execution of our algorithm, since there is no need to
continue merging adjacent intervals. The whole process is depicted in Fig. 1.

It should be noted that only two distances must be recomputed in each

iteration of our algorithm. Once vi is merged with viþ1, the resulting class

distribution Vi;iþ1 is computed. We just need to evaluate the similarity between

Vi;iþ1 and its neighbours (Vi�1 and Viþ2) because the other class distributions and

similarity measurements remain unchanged.
Fig. 1. Iterative grouping of adjacent intervals.
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4.3.2. Measuring similarity

Although we have used the Euclidean distance in the example above, others

similarity measures are also feasible.

Any feasible similarity measure should encourage the combination of adja-
cent intervals when their most common class is the same, although this naive

criterion is useless in problems where the class populations are quite unbal-

anced. To state it more clearly, if 95% of the training examples belong to the

same class, such a simple similarity criterion would eventually merge all attri-

bute values into a single interval in a meaningless way, since the most common

class would probably be the same for all the possible interval partitions.

In order to avoid such a pathological behaviour, we will have to use simi-

larity functions which take into account the class probability for every problem
class, not just the most common one.

Table 1 summarizes several similarity measures which have been proposed

in the literature and can be used to solve our problem. A more in-depth

description of those similarity measures can be found in [2].
Table 1

Some similarity measures

Distance-based models

Minkowski r-metric drðx; yÞ ¼
PJ

j¼1 jxj � yjjr
� �1

r
, rP 1

Euclidean distance d2ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1ðxj � yjÞ2
q

Manhattan distance d1ðx; yÞ ¼
PJ

j¼1 jxj � yjj
Dominance metric d1ðx; yÞ ¼ maxj¼1;...;J jxj � yjj

Bhattacharyya distance Rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PJ
j¼1

ffiffiffiffiffiffiffiffiffiffi
xj; yj

pq

Correlation-like similarity measures

Dot-product S�ðx; yÞ ¼ x � y ¼
PJ

j¼1 xjyj

Correlation-like index qðx; yÞ ¼ 1� 4
NxþNy

� �
d2
2 , where Nv ¼

PJ
j¼1ð2vj � 1Þ2

Set-theoretical approaches

Tversky’s model sða; bÞ ¼ hf ðA \ BÞ � af ðA� BÞ � bf ðB� AÞ,
where h, a, bP 0

Restle’s model �SRestleðA;BÞ ¼ jA�Bj
�S�ðA;BÞ ¼ supx lA�BðxÞ

Intersection model SMinSumðA;BÞ ¼ jA \ Bj
�SEntaðA;BÞ ¼ 1� supx lA\BðxÞ

Ratio model sða; bÞ ¼ f ðA\BÞ
f ðA\BÞþaf ðA�BÞþbf ðB�AÞ, where a, bP 0

Gregson’s model SGregsonðA;BÞ ¼ jA\Bj
jA[Bj

Notes: jAj ¼
P

x lAðxÞ.
lA\BðxÞ ¼ minflAðxÞ;lBðxÞg.
lA[BðxÞ ¼ maxflAðxÞ; lBðxÞg.
lA�BðxÞ ¼ max minflAðxÞ; 1� lBðxÞg;minf1� lAðxÞ;lBðxÞgf g.
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4.3.3. Interleaving the hierarchical clustering algorithm with the TDIDT

evaluation process

We have chosen a hierarchical clustering algorithm because it allows us to

intertwine its execution with the evaluation of alternative training set partitions
in order to build a multi-way decision tree. Hierarchical agglomerative clus-

tering methods (HACM) have been widely used in several fields, including

information retrieval and a good survey of them can be found at [27].

Any HACM can be described by the following general algorithm:

1. Create one cluster per pattern in the training dataset.

2. Identify the two closest clusters and combine them in a cluster.

3. If more than one cluster remains, return to step 2.

Individual HACMs differ in the way in which the most similar pair is de-

fined, and in the means used to represent a cluster.

In our problem, we start with each separate attribute value as an individual

interval and we merge the two most similar adjacent intervals. If we had N
intervals, we are left with N � 1 intervals. This process is repeated until there

are only two intervals left, which would lead to a binary decision tree if used to

branch it.
Each time we merge two adjacent intervals, we can check the impurity

measure associated with the decision tree we would build using the current set

of intervals to branch the tree with the numerical attribute we are analyzing. If

that measure improves the best one obtained so far, we record the current

interval set in order to use it to branch the tree if no better splits are attained in

subsequent iterations. Obviously, this technique is orthogonal to the splitting

criterion used to evaluate alternative splits, let it be C4.5 gain ratio, Gini index

of diversity, or whatever.
The resulting algorithm can be expressed as shown in Fig. 2 and allows us to

build multi-way decision trees without setting a tree branching factor before-

hand. We should, however, set a maximum branching factor in order to reduce

the number of alternative tree evaluations performed and, therefore, speed up
Fig. 2. Context discretization interleaved within the TDIDT process.
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the construction of the decision tree. This maximum value can be determined by

the usual threshold TDIDT algorithms employ to stop the decision tree learning

process as a pre-pruning technique: when the resulting subsets of the training

dataset contain only a few examples, there is no need to branch the tree further.
Analogously, we can use that threshold to avoid checking partitions of the

training dataset during the first stages of the agglomerative clustering algorithm

(i.e. when almost every value constitutes an interval of its own).

For every continuous attribute we would perform the above clustering

algorithm in order to find the most promising split of the decision tree.

Although traditional HACMs can be usually implemented using algorithms

that are OðN 2Þ in time and OðNÞ in space, our special-purpose HACM is only

OðN logNÞ in time. Since interval adjacency is established beforehand and only
two similarity measurements have to be computed in each iteration, a heap-like

data structure can be employed to perform each iteration in OðlogNÞ steps.
Alternatively, we could use a divisive top-down hierarchical clustering

algorithm starting from a unique interval covering the whole instance space

and splitting it in each iteration. Note that the top-down approach is less

sensitive to noise in the training set, since the agglomerative bottom-up algo-

rithm starts with the local class distributions for each value of the continuous

feature. The noise effect could also be reduced using a standard binning dis-
cretization algorithm beforehand (such as equidepth) and it could also improve

our method performance since less similarity measures would need to be

computed to get our algorithm started.

In the following section we present the empirical results we have attained

using our algorithm to build multi-way decision trees with numerical attributes

and compare them with the results obtained using binary splits and previous

discretization methods for this kind of attributes.
5. Experimental results

Table 3 summarizes the results we have obtained building decision trees

using different local discretization methods for 16 standard small and medium-

sized datasets (see Table 2), most of them from the UCI Machine Learning
Repository. Those datasets can be downloaded from the following URL:

http://www.ics.uci.edu/~mlearn/MLRepository.html

All the results reported in this section were obtained using 10-CV (10-fold

cross-validation), Quinlan’s gain ratio criterion, and pessimistic pruning (with

CF ¼ 0:25), as described in [25].

The standard binary-split C4.5 algorithm is compared with several multi-

way techniques: our contextual discretizer, three previous supervised discre-
tizers (Holte’s One Rule, Fayyad and Irani’s MDLP, and Ho and Scott’s Zeta),

http://www.ics.uci.edu/~mlearn/MLRepository.html


Table 2

Datasets used in our experiments

Dataset #Instances #Features #Classes

Adult 48,842 14 2

Australian 690 14 2

Breast 699 9 2

Bupa 245 7 2

Car 1728 6 4

Glass 214 10 6

Hayesroth 160 4 3

Heart 270 13 2

Ionosphere 351 34 2

Iris 150 4 3

Pima 768 8 2

Spambase 4601 57 2

Thyroid 2800 29 2

Waveform 5000 21 3

Wine 178 13 3

Yeast 1484 8 10
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and three standard unsupervised discretization methods (the ubiquitous k-
Means and two binning algorithms: Equiwidth and Equidepth). To improve
our algorithm robustness in the presence of noise, we use an agglomerative

clustering algorithm (using the Euclidean distance to measure dissimilarity

between class distributions) preceded by Equidepth binning (using 25 bins as a

starting point for our hierarchical clustering method).

Table 3 shows that our method is competitive in terms of classification

accuracy and it tends to build small decision trees. It is remarkable that our

discretization technique outperforms any other discretization method in its

estimated error (that is, the estimation of error used by Quinlan’s pessimistic
pruning) although there are no big differences in the 10-CV measured error.

Regarding to the tree size, our method obtains trees which contain 84% of the

nodes required by the corresponding binary tree on average and it is only

outperformed by Fayyad and Irani’s MDLP discretizer.

The 10-CV classifier accuracy results obtained for each dataset and dis-

cretization method are displayed in Table 4. Multi-way decision trees for

numerical attributes improved TDIDT accuracy in some experiments. Our

method significantly improved binary-decision tree accuracy in three datasets
(BUPABUPA, PIMAPIMA, and YEASTYEAST) and was slightly worse in only two datasets (GLASSGLASS

and WINEWINE). Other discretization methods obtain similar results, although our

contextual discretization tends to outperform them. Our method did not al-

ways obtain accuracy improvements, although the accuracy loss was not sig-

nificant either. It should be noted, however, that the pessimistic pruning might

bias the results in some cases (such as in BUPABUPA when the MDLP criterion is

used and the tree is aggressively pruned).



Table 3

Local discretization experiments summary

C4.5 Con-

text

One-

Rule

MDLP Zeta k-
Means

Equi-

width

Equi-

depth

CV accuracy 82.00% 82.04% 76.90% 81.44% 74.87% 81.53% 81.06% 81.01%

Measured

error

18.00% 17.96% 23.10% 18.56% 25.13% 18.47% 18.94% 18.99%

Estimated

error

12.74% 14.34% 16.88% 16.44% 19.99% 16.36% 17.27% 17.20%

Training

time (s)

6.93 12.17 7.30 7.92 15.53 20.82 8.61 8.26

Tree size 110.9 83.8 96.1 42.5 116.8 84.3 93.5 89.0

Internal

nodes

49.9 32.1 21.8 15.8 15.3 24.0 29.0 27.0

Leaves 60.9 51.7 74.3 26.7 101.6 60.3 64.5 62.0

Average tree

depth

3.91 3.40 2.37 3.02 1.84 2.80 4.43 2.70

Table 4

Classifier accuracy

Dataset C4.5 Con-

text

One-

Rule

MDLP Zeta k-
Means

Equi-

width

Equi-

depth

Adult 82.60% 82.58% 77.10% 85.27% 80.56% 84.73% 82.92% 82.42%

Australian 85.65% 84.93% 85.80% 85.07% 84.78% 85.51% 84.64% 85.65%

Breast 93.99% 93.84% 94.85% 94.28% 95.57% 95.28% 95.28% 94.27%

Bupa 66.10% 67.83% 59.76% 57.71% 57.71% 64.71% 62.96% 66.72%

Car 92.88% 92.88% 92.88% 92.88% 92.88% 92.88% 92.88% 92.88%

Glass 70.06% 68.77% 59.70% 66.34% 49.46% 70.58% 67.38% 63.46%

Hayesroth 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75%

Heart 77.04% 76.67% 74.07% 76.67% 73.33% 78.89% 78.52% 79.63%

Ionosphere 90.60% 90.32% 87.21% 91.16% 79.76% 88.31% 89.17% 88.60%

Iris 94.00% 93.33% 94.00% 93.33% 93.33% 95.33% 94.67% 94.67%

Pima 74.85% 76.81% 68.74% 74.72% 58.19% 74.20% 76.03% 72.76%

Spambase 90.52% 90.24% 87.09% 92.00% 87.83% 91.68% 82.22% 92.11%

Thyroid 96.18% 95.61% 96.46% 97.29% 96.04% 95.32% 96.04% 94.54%

Waveform 76.80% 76.50% 58.86% 76.80% 55.36% 74.38% 75.74% 74.58%

Wine 92.71% 91.57% 75.07% 90.92% 74.51% 87.09% 92.68% 88.20%

Yeast 54.25% 56.94% 45.15% 54.79% 44.81% 51.76% 52.09% 51.89%

Average 82.00% 82.04% 76.90% 81.44% 74.87% 81.53% 81.06% 81.01%

Win-Loss-

Tie (1%)

3-2-11 0-10-2 3-3-10 1-10-5 5-5-6 3-7-6 2-7-7
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The accuracy results are more relevant when we take into account that the

resulting tree complexity diminishes when multi-way splits are used. The tree

size (internal nodes plus leaves) and the average tree depth are reduced. Al-
though it is commonly assumed that binary decision trees have less leaves but
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are deeper than multi-way trees [21], we have found that this fact does not hold

(at least after pruning) since the pruned binary tree can have more leaves than

its multi-way counterpart as Table 3 shows for our discretizer and MDLP: you

can end up with simpler trees if you use multi-way splits even for numerical
attributes.

We have also tested the analyzed discretization methods using global dis-

cretization instead of discretizing continuous attributes at each node of the

tree. As previous studies have suggested, global discretization improves

TDIDT efficiency, reduces tree complexity, and maintains classification accu-

racy. Table 5 summarizes our results using a top-down contextual discretizer

(which is more robust in the presence of noise) and the other discretization

methods described above. Our method also performs well when used as a
global discretization technique.

Further experiments [2] have shown that our method achieves interesting

results, regardless of the particular similarity measure employed to group

continuous values into intervals (see Table 1). In general, distance-based sim-

ilarity measures tend to obtain uniform results, while correlation-like measures

induce more variability in the experiments outcomes. Among the various set-

theoretical approaches to measure similarities, Enta’s model stands out.

However, there are no significant differences among the similarity measures we
have tested in our experiments.

It is important to remark that, in spite of the additional computing resources

required by the interleaved hierarchical clustering method we propose to build

multi-way decision trees, the overall TDIDT asymptotic complexity is pre-

served and, therefore, our approach is still applicable to data mining problems

where decision trees play an important role [11]. Moreover, as our technique is
Table 5

Global discretization experiments summary

C4.5 Con-

text

One-

Rule

MDLP Zeta k-
Means

Equi-

width

Equi-

depth

CV accuracy 82.00% 81.92% 77.24% 82.40% 74.91% 81.25% 79.24% 81.16%

Measured

error

18.00% 18.08% 22.76% 17.60% 25.09% 18.75% 20.76% 18.84%

Estimated

error

12.74% 16.60% 20.53% 15.94% 22.12% 16.96% 19.47% 17.24%

Training

time (s)

6.93 1.62 6.30 1.02 10.54 1.03 1.05 1.02

Tree size 110.9 70.7 77.6 62.7 92.1 85.5 75.4 82.4

Internal

nodes

49.9 21.8 10.1 20.8 9.0 24.4 23.2 24.1

Leaves 60.9 48.9 67.4 41.8 83.0 61.1 52.2 58.2

Average tree

depth

3.91 2.76 1.70 3.03 1.55 2.80 4.09 2.60
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orthogonal to the underlying TDIDT algorithm, it can be appended to efficient

implementations of the TDIDT process, such as PUBLIC or RainForest.
6. Conclusions

It is well-known that no particular splitting rule does significantly increase

classification accuracy for decision tree classifiers in TDIDT algorithms.

Similarly, great accuracy improvements caused by changes in the tree topology

cannot be expected. However, slight modifications in the way that decision

trees are built can lead to quite different classification models. Although the

classification accuracy obtained will be always similar, the complexity of the

resulting trees can vary widely.
In this paper we have proposed an alternative way of handling numerical

attributes when building multi-way decision trees so that the resulting trees

tend to be smaller and their accuracy is preserved. In fact, the classifier accu-

racy is even improved in some cases.

Following Occam’s Economy Principle, it is commonly agreed that finding

new ways to build smaller decision trees is a desirable goal. Our algorithm, like

Fayyad and Irani’s MDLP, is remarkable because it dramatically reduces tree

complexity without hurting classifier accuracy at a reasonable cost. Moreover,
knowledge workers (the executives, analysts, and managers who employ

decision support systems) usually feel more comfortable with multi-way splits

than with binary trees, and this is also true for numerical attributes.

It is also worthwhile to mention that the method we have proposed does not

significantly increase TDIDT computational cost and is orthogonal to the

particular TDIDT implementation, so that our algorithm can be easily inte-

grated into the algorithms which have been recently devised to handle huge

amounts of data, such as PUBLIC [28] and RainForest [12].
Our method can also be used as an alternative discretization technique to be

added to the computer scientist toolkit, since it has proven to be efficient and

suitable for both local and global discretization. We feel that our focus of

measuring dissimilarity between class distributions between adjacent intervals

is preferable to previous supervised discretization methods (such as 1R,

MDLP, and Zeta) which use some kind of purity measure to evaluate a par-

ticular interval without taking into account the nature of neighboring intervals.
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